

## مكتب التكوين المهني وإنعكاش الشكفل

## Office de la Formation Professionnelle et de la Promotion du Travail

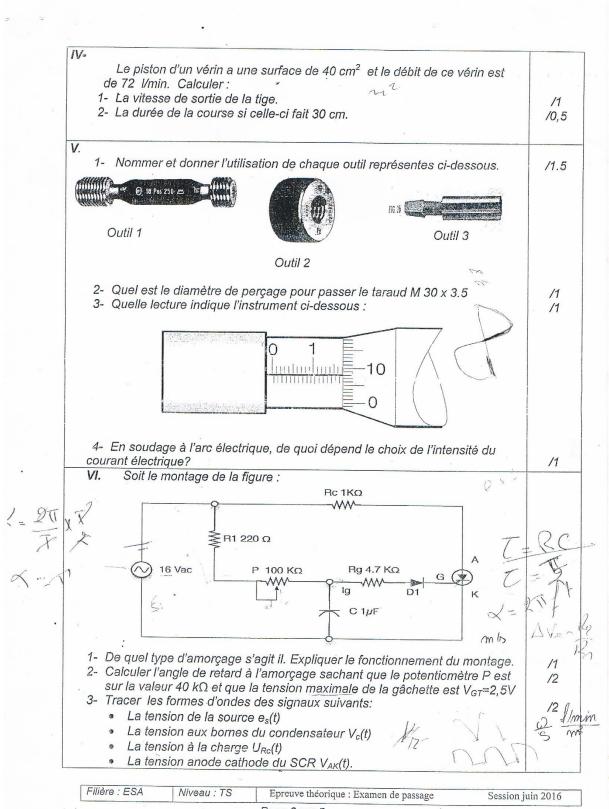
## Direction Recherche et Ingénierie de la Formation

## Examen de passage, formation initiale Session juin 2016

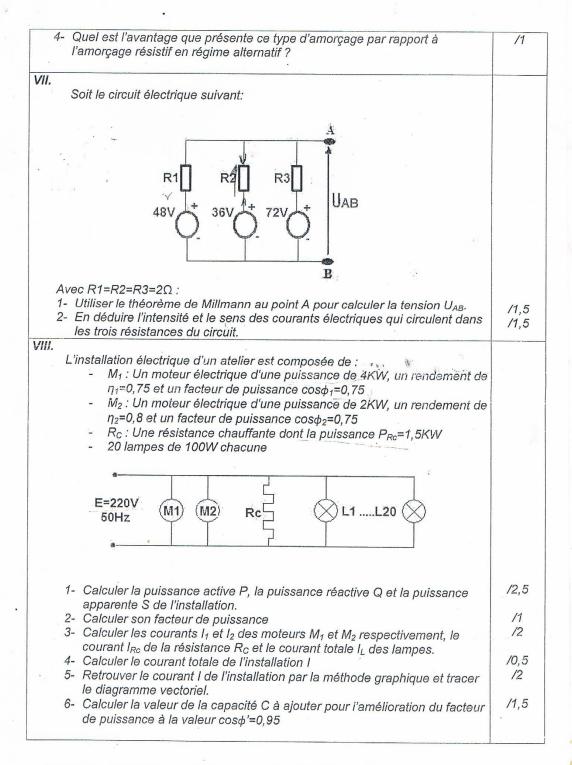
Filière : Electromécanique des systèmes automatisés

Niveau: TS

Epreuve théorique

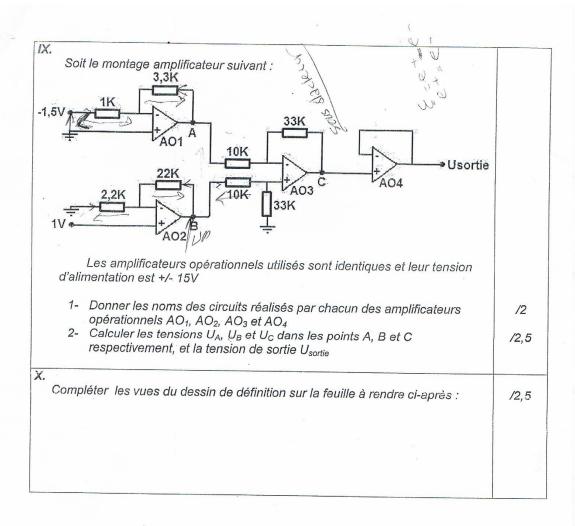

Durée: 4h

Barème: /40 pts


|                                                                                                                                                | Barème   |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| I. Donner la signification des codes de désignation des conduits suivants :                                                                    |          |
|                                                                                                                                                |          |
| 1- NF-USE-IRO5-PE21                                                                                                                            | /0.75    |
| 2- NF-USE 32(MRB) 500                                                                                                                          | /0,75    |
| II.                                                                                                                                            | 1.7,1.   |
| Une pompe fonctionne à 120°C et la distance de l'arbre moteur à sa base                                                                        | est      |
| 700 mm.                                                                                                                                        |          |
| Calculer la différence de hauteur que devra avoir la pompe par rapport au                                                                      | /1,5     |
| moteur sachant que pour le récepteur :                                                                                                         | 1        |
| à 100 °C une expansion de 0.5                                                                                                                  |          |
| <ul> <li>à 120 °C une expansion de 0.75</li> </ul>                                                                                             |          |
| • à 150 °C une expansion de 1.00                                                                                                               |          |
| III.                                                                                                                                           |          |
| Soit le circuit électronique à transistor ci-contre:                                                                                           |          |
|                                                                                                                                                |          |
| 1- De quel type de montage s'agit-il ?                                                                                                         | /0,5     |
| 2- Pour $V_{BE1}$ = $V_{BE2}$ =0,7 $V$ , calculer la tension $V_{E2}$                                                                          | /1       |
| aux bornes de la résistance R <sub>E</sub> .                                                                                                   |          |
| 3- Sachant que le coefficient d'amplification du                                                                                               | /1,5     |
| transistor Q <sub>2</sub> vaut β <sub>2</sub> =150, calculer I <sub>C1</sub> Ie 5V ο γίος courant du collecteur du transistor Q <sub>1</sub> . |          |
| 4- Calculer I <sub>B1</sub> le courant de base du transistor                                                                                   | (0.5     |
| Q <sub>1</sub> sachant que le coefficient d'amplification                                                                                      | 2Vc 10,5 |
| du transistor $Q_1$ vaut $\beta_1$ =100                                                                                                        | 2        |
|                                                                                                                                                | 1        |
| E Calcular la apofficient d'amplification de tout                                                                                              | 1. 14    |
| E Calcular la apofficient d'amplification de tout                                                                                              | RE /1    |

| Filière : ESA Niveau : TS | Epreuve théorique : Examen de passage | Session juin 2016 |
|---------------------------|---------------------------------------|-------------------|
|---------------------------|---------------------------------------|-------------------|

Page 1 sur 5




Page 2 sur 5



| Filière : ESA | Niveau: TS | Epreuve théorique : Examen de passage | Session juin 2016 |
|---------------|------------|---------------------------------------|-------------------|

Page 3 sur 5



| Filière : ESA | Niveau : TS | Epreuve théorique : Examen de passage | Session juin 2016 |
|---------------|-------------|---------------------------------------|-------------------|