

ROYAUME DU MAROC

Office de la Formation Professionnelle et de la Promotion du Travail
DIRECTION RECHERCHE ET INGENIERIE DE FORMATION

RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

MODULE N°3: RESISTANCE DES MATERIAUX

SECTEUR: CONSTRUCTION METALLIQUE

SPECIALITE: TSBECM

NIVEAU: TECHNICIEN SPECIALISE

Résumé de Théorie et	RESISTANCE DES MATERIAUX
Guide de travaux pratique	RESISTANCE DES MATERIAUX

Document élaboré par :

Nom et prénomEFPDRMIFDAL AbderrahimISTA GMDRGC

et complété par l'équipe du CDC Génie Mécanique Révision linguistique

-

_

Validation

-

-

SOMMAIRE

	Page
Présentation du module	7
Résumé de théorie	
I. Généralités	9
I.1. Introduction et Hypothèses	
I.2. Sollicitations simples	
I.3. Notion de contraintes	
II. Traction Simple	16
II.1. Essai de traction	
II.2. Déformations Elastiques	
II.3. Contraintes Normales	
II.4. Loi de HOOKE	
II.5. Condition de résistances	
II.7. Concentration de contraintes	
III. Cisaillement	21
III.1. Rappels	
III.2. Essai de cisaillement	
III.3. Déformations Elastiques	
III.4. Contraintes Tangentielles	
III.5. Loi de HOOKE	
III.6. Condition de résistances	
IV. Moments Statiques et Quadratiques	26
IV.1. Moments Quadratiques	
IV.2. Théorème de Huyghens	
IV.3. Moments Statiques	
V. Flexion Plane Simple	29
V.1. Rappels	
V.2 Modélisation des forces Extérieures	
V.3 Modélisation des liaisons (Appuis)	
V.4 Equilibre Isostatique et Hyperstatique	
V.5 Efforts tranchants et moments Fléchissants	
V.6 Etude des Contraintes	
V.7. Etude de la déformée	
VI. Torsion simple	40
VI.1 Rappels	

Liste bibliographique

81

Résumé de Théorie et	
Guide de travaux pratique	

RESISTANCE DES MATERIAUX

MODULE:

RESISTANCE DES MATERIAUX

Durée :70 h

60% : théorique

37%: pratique

OBJECTIF OPERATIONNEL DE PREMIER NIVEAU **DE COMPORTEMENT**

COMPORTEMENT ATTENDU

Pour démontrer sa compétence, le stagiaire doit appliquer des notions de résistance des matériaux, selon les conditions, les critères et les précisions qui suivent

CONDITIONS D'EVALUATION

- Travail individuel
- À partir :
 - de plan, de croquis et des données;
 - d'un cahier des charges ;
 - des documents et données techniques ;
 - de maquettes et pièces existantes ;
 - de consignes et directives
 - des études de cas
 - d'un système mécanique
- À l'aide :
 - d'une calculatrice (éventuellement un logiciel de calcul)
 - de formulaires, abaques et diagrammes

CRITERES GENERAUX DE PERFORMANCE

- Démarche méthodique de travail
- Précision et exactitude des calculs
- Respect des hypothèses et principes de la RDM
- Respect du cahier des charges et les contraintes de fonctionnement
- Analyse de la valeur
- Argumentation et justification des différents choix
- Traçabilité du travail et notes de calculs

OBJECTIF OPERATIONNEL DE PREMIER NIVEAU **DE COMPORTEMENT**

PRECISIONS SUR LE COMPORTEMENT ATTENDU

CRITERES PARTICULIERS DE PERFORMANCE

- A. Définir et calculer les contraintes simples dans une poutre isostatique soumise à des efforts coplanaires et dans l'espace
- Interprétation correct des hypothèses de RDM
- Maîtrise du vocabulaire utilisé en RDM
- Choix de la méthode de travail
- B. Dimensionner en statique des composants mécaniques en tenant compte de la pression du contact
- Analyse de problème
- Dimensionnement correcte et argumenté
- Utilisation justifiée des formules
- C. Calculer et vérifier des éléments d'assemblage rivés, vissés ou soudés
- Souci de sécurité dans le dimensionnement
- Choix de la méthode et des formules de calculs
- Exactitude et précision des calculs
- D. Dimensionner et vérifier un composant métallique en tenant compte des déformations
- Dimensionnement correcte et argumenté en tenant compte des déformations
- Exactitude des calculs
- E. Dimensionner et vérifier les enveloppes et solides d'égale résistance
- Analyse de problème
- Exactitude des calculs
- Méthode de travail

OBJECTIFS OPERATIONNELS DE SECOND NIVEAU

Le stagiaire doit maîtriser les savoirs, savoir-faire, savoir percevoir ou savoir être jugés préalables aux apprentissages directement requis pour l'atteinte de l'objectif opérationnel de premier niveau, tels que :

Avant d'apprendre à définir et calculer les contraintes simples dans une poutre isostatique soumise à des efforts coplanaires et dans l'espace (A) :

- 1. Interpréter les notions et expressions courantes relatives à la résistance des matériaux
- 2. Respecter les hypothèses fondamentales de la résistance des matériaux
- 3. Classer les sollicitations en relation avec les essais mécaniques
- 4. Retrouver les caractéristiques mécaniques d'un matériau

Avant d'apprendre à dimensionner en statique des composants mécaniques en tenant compte de la pression du contact (B) :

5. Distinguer les types de charge et les efforts

Avant d'apprendre à calculer et vérifier des éléments d'assemblage rivtés, vissés ou soudés (C) :

- 6. Se soucier de la sécurité dans le dimensionnement des composants et introduire les coefficients de sécurité dans les calculs en mécanique
- 7. Déterminer les contraintes : normales et tangentielles
- 8. Définir la relation entre le torseur des efforts et les contraintes
- 9. Tenir compte dans les calculs des coefficients de concentration de contraintes

Avant d'apprendre à dimensionner et vérifier un composant métallique en tenant compte des déformations (D) :

- 10. Définir la notion d'élasticité
- 11. Etudier la relation entre le torseur des efforts et des déplacements

Avant d'apprendre à dimensionner et vérifier les enveloppes et solides d'égale résistance (E):

12. Maîtriser les calculs de la RDM pour différentes sollicitations simples

PRESENTATION DU MODULE

Ce module de compétence générale se dispense en cours de la première année du programme formation. Ce module est en parallèle à tous les modules de compétences à caractère étude et conception. Un chevauchement avec le module sur les mathématiques et la mécanique appliquée peut être éventuellement envisagé.

DESCRIPTION

L'objectif de ce module est de faire acquérir les outils et les principes de la résistance des matériaux relatifs au dimensionnement des composants et des ensembles mécaniques et notamment des montages d'usinage. Il vise surtout à rendre le stagiaire responsable de ces calculs de dimensionnement et de ses propositions pour garantir le maximum de sécurité à moindre coût. Le stagiaire à aussi la responsabilité dans le choix des éléments mécaniques du commerce notamment les montages modulaires qui remplissent les performances attendues dans le montage étudié.

Résumé de Théorie et Guide de travaux pratique

RESISTANCE DES MATERIAUX

Module09: APPLICATION DES NOTIONS DE RESISTANCE DES MATERIAUX RESUME THEORIQUE

I. 1. <u>INTRODUCTION ET HYPOTHESES</u>

I.1.1. Buts de la résistance des matériaux

La résistance des matériaux a trois objectifs principaux :

- ♦ la connaissance des caractéristiques mécaniques des matériaux.
 (comportement sous l'effet d'une action mécanique)
- ◆ l'étude de la résistance des pièces mécaniques. (résistance ou rupture)
- ♦ l'étude de la déformation des pièces mécaniques.

Ces études permettent de choisir le matériau et les dimensions d'une pièce mécanique en fonction des conditions de déformation et de résistance requises.

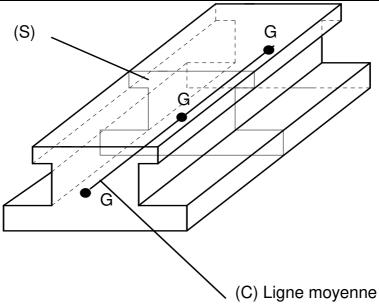
I.1.2. Hypothèses

a.. Le matériau

- ➤ Continuité : la matière est supposée continue car son aspect moléculaire est trop "fin" pour l'étude qui nous intéresse.
- ➤ Homogénéité : on supposera que tous les éléments de la matière, aussi petits soient ils, sont identiques.
 - (hypothèse non applicable pour le béton ou le bois)
- ➤ **Isotropie** : on supposera qu'en tout point et dans toutes les directions, la matière a les mêmes propriétés mécaniques.
 - (hypothèse non applicable pour le bois ou les matériaux composites)

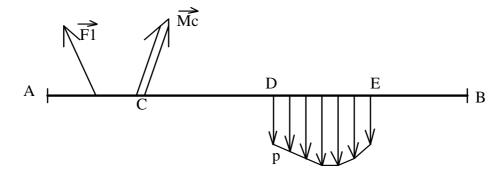
b. Notion de Poutre

La **RDM** étudie des pièces dont les formes sont relativement simples. Ces pièces sont désignées sous le terme de « poutres ».

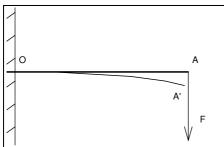

Poutre : on appelle *poutre* (voir fig.) un solide engendré par une surface plane (S) dont le centre de surface G décrit une courbe plane (C) appelée *ligne moyenne*.

Les caractéristiques de la poutre sont :

- ligne moyenne droite ou à grand rayon de courbure.
- section droite (S) constante ou variant progressivement.
- grande longueur par rapport aux dimensions transversales. (en général 10 fois)


9

• existence d'un plan de symétrie.


c.. Les forces extérieures

- Plan de symétrie : les forces extérieures seront situées dans le plan de symétrie de la poutre ou alors disposées symétriquement par rapport à ce plan.
- > Types d'actions mécaniques extérieures : deux types d'actions mécaniques peuvent s'exercer sur la poutre (voir fig.) :
 - charges concentrées $(F_1$ ou moment $M_C)$
 - charges réparties p sur DE. (exprimées en N/m).

d.. Les déformations

Les déformations étant petites devant les dimensions de la poutre, les actions s'exerçant sur celle-ci

seront calculées à partir du principe fondamental de la statique. Les supports des forces seront eux considérés comme constants.